4.6 Article

Apolipoprotein E4 forms a molten globule -: A potential basis for its association with disease

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 52, Pages 50380-50385

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M204898200

Keywords

-

Funding

  1. NINDS NIH HHS [NS35939] Funding Source: Medline

Ask authors/readers for more resources

The amino-terminal domain of apolipoprotein (apo) E4 is less susceptible to chemical and thermal denaturation than the apoE3 and apoE2 domains. We compared the urea denaturation curves of the 22-kDa amino-terminal domains of the apoE isoforms at pH 7.4 and 4.0. At pH 7.4, apoE3 and apoE4 reflected an apparent two-state denaturation. The midpoints of denaturation were 5.2 and 4.3 M urea, respectively. At pH 4.0, a pH value known to stabilize folding intermediates, apoE4 and apoE3 displayed the same order of denaturation but with distinct plateaus, suggesting the presence of a stable folding intermediate. In contrast, apoE2 proved the most stable and lacked the distinct plateau observed with the other two isoforms and could be fitted to a two-state unfolding model. Analysis of the curves with a three-state unfolding model (native, intermediate, and unfolded) showed that the apoE4 folding intermediate reached its maximal concentration (approximate to90% of the mixture) at 3.75 M, whereas the apoE3 intermediate was maximal at 4.75 M (approximate to80%). These results are consistent with apoE4 being more susceptible to unfolding than apoE3 and apoE2 and more prone to form a stable folding intermediate. The structure of the apoE4 folding intermediate at pH 4.0 in 3.75 m urea was characterized using pepsin proteolysis, Fourier transform infrared spectroscopy, and dynamic light scattering. From these studies, we conclude that the apoE4 folding intermediate is a single molecule with the characteristics of a molten globule. We propose a model of the apoE4 molten globule in which the four-helix bundle of the amino-terminal domain is partially opened, generating a slightly elongated structure and exposing the hydrophobic core. Since molten globules have been implicated in both normal and abnormal physiological function, the differential abilities of the apoE isoforms to form a molten globule may contribute to the isoform-specific effects of apoE in disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available