4.6 Article Proceedings Paper

Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2002.1155

Keywords

T-type calcium current; electrical coupling; astrocytes; calcium waves; development

Categories

Ask authors/readers for more resources

In this review, we summarize three sets of findings that have recently been observed in thalamic astrocytes and neurons, and discuss their significance for thalamocortical loop dynamics. (i) A physiologically relevant 'window' component of the low-voltage-activated, T-type Ca2+ current (I-Twindow) plays an essential part in the slow (less than 1 Hz) sleep oscillation in adult thalamocortical (TC) neurons, indicating that the expression of this fundamental sleep rhythm in these neurons is not a simple reflection of cortical network activity, It is also likely that I-Twindow underlies one of the cellular mechanisms enabling TC neurons to produce burst firing in response to novel sensory stimuli. (ii) Both electrophysiological and dye-injection experiments support the existence of gap junction-mediated coupling among young and adult TC neurons. This finding indicates that electrical coupling-mediated synchronization might be implicated in the high and low frequency oscillatory activities expressed by this type of thalamic neuron. (iii) Spontaneous intracellular Ca2+ ([Ca2+],) waves propagating among thalamic astrocytes are able to elicit large and long-lasting X-methyl-D-aspartate-mediated currents in TC neurons. The peculiar developmental profile within the first two postnatal weeks of these astrocytic [Ca2+], transients and the selective activation of these glutamate receptors point to a role for this astrocyte-to-neuron signalling mechanism in the topographic wiring of the thalamocortical loop. As some of these novel cellular and intracellular properties are not restricted to thalamic astrocytes and neurons, their significance may well apply to (patho) physiological functions of glial and neuronal elements in other brain areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available