4.8 Article

Lowering of the kinetic energy in interacting quantum systems

Journal

PHYSICAL REVIEW LETTERS
Volume 89, Issue 28, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.89.280401

Keywords

-

Ask authors/readers for more resources

Interactions never lower the ground state kinetic energy of a quantum system below the noninteracting value. However, at nonzero temperature, where the system occupies a thermal distribution of states, interactions can reduce the kinetic energy. This can be demonstrated from a first order weak coupling expansion. Simulations (both variational and restricted path integral Monte Carlo) of the electron gas model and dense hydrogen confirm this and show that in contrast to the ground state case, at nonzero temperature the population of low momentum states can be increased relative to the free Fermi distribution. This effect is not seen in simulations of liquid He-3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available