4.8 Article

An active DNA transposon family in rice

Journal

NATURE
Volume 421, Issue 6919, Pages 163-167

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature01214

Keywords

-

Ask authors/readers for more resources

The publication of draft sequences for the two subspecies of Oryza sativa (rice), japonica (cv. Nipponbare) and indica (cv. 93-11)(1,2), provides a unique opportunity to study the dynamics of transposable elements in this important crop plant. Here we report the use of these sequences in a computational approach to identify the first active DNA transposons from rice and the first active miniature inverted-repeat transposable element (MITE) from any organism. A sequence classified as a Tourist-like MITE of 430 base pairs, called miniature Ping (mPing), was present in about 70 copies in Nipponbare and in about 14 copies in 93-11. These mPing elements, which are all nearly identical, transpose actively in an indica cell-culture line. Database searches identified a family of related transposase-encoding elements (called Pong), which also transpose actively in the same cells. Virtually all new insertions of mPing and Pong elements were into low-copy regions of the rice genome. Since the domestication of rice mPing MITEs have been amplified preferentially in cultivars adapted to environmental extremes-a situation that is reminiscent of the genomic shock theory for transposon activation(3).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available