4.6 Article

Modelled and measured residual stresses in a bimaterial joint

Journal

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
Volume 132, Issue 1-3, Pages 235-241

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0924-0136(02)00932-9

Keywords

residual stress; finite element method; welding; bimaterial; elasto-plastic analysis

Ask authors/readers for more resources

A finite element technique has been used to predict residual and thermal stresses due to welding. For this purpose, a steel-brass material couple was chosen and thin plates of the materials were hard brazed. The finite element study was carried out using two-dimensional models. After the temperature distributions as a result of welding were calculated, thermal and residual stress values obtained. Thermo-elasto-plastic formulations using a von-Mises yield criterion with linear isotropic-hardening were employed. For this deformation, the initial stress method was used and the kinematical Bauschinger effect was considered. The authors prepared all calculation programs using FORTRAN 77. To obtain residual stresses that occur during the welding, the hole-drilling strain-gage method was chosen and conducted in accordance with the ASTM Standard E 837-99. The agreement between the calculated results and the experimental data shows that the finite element analysis method is reliable. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available