4.7 Article

Stellar populations in local star-forming galaxies -: II.: Recent star formation properties and stellar masses

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 338, Issue 2, Pages 525-543

Publisher

OXFORD UNIV PRESS
DOI: 10.1046/j.1365-8711.2003.06078.x

Keywords

galaxies : evolution; galaxies : fundamental parameters; galaxies : photometry; galaxies : stellar content; infrared : galaxies; radio lines : galaxies

Ask authors/readers for more resources

We present the integrated properties of the stellar populations in the Universidad Complutense de Madrid (UCM) Survey galaxies. Applying the techniques described in the first paper of this series, we derive ages, burst masses and metallicities of the newly formed stars in our sample galaxies. The population of young stars is responsible for the Halpha emission used to detect the objects in the UCM Survey. We also infer total stellar masses and star formation rates in a consistent way taking into account the evolutionary history of each galaxy. We find that an average UCM galaxy has a total stellar mass of similar to10(10) M-., of which about 5 per cent was formed in an instantaneous burst that occurred about 5 Myr ago, and subsolar metallicity. Less than 10 per cent of the sample shows massive starbursts involving more than half of the total mass of the galaxy. Several correlations are found among the derived properties. The burst strength is correlated with the extinction and with the integrated optical colours for galaxies with low obscuration. The current star formation rate is correlated with the gas content. A stellar mass-metallicity relation is also found. Our analysis indicates that the UCM Survey galaxies span a broad range in properties between those of galaxies completely dominated by current/recent star formation and those of normal quiescent spirals. We also find evidence indicating that star formation in the local Universe is dominated by galaxies considerably less massive than L*.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available