4.7 Article

Stellar populations in local star-forming galaxies -: I.: Data and modelling procedure

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 338, Issue 2, Pages 508-524

Publisher

OXFORD UNIV PRESS
DOI: 10.1046/j.1365-8711.2003.06077.x

Keywords

methods : data analysis; galaxies : evolution; galaxies : photometry; galaxies : stellar content; infrared : galaxies

Ask authors/readers for more resources

We present an analysis of the integrated properties of the stellar populations in the Universidad Complutense de Madrid (UCM) Survey of Halpha-selected galaxies. In this paper, the first of a series, we describe in detail the techniques developed to model star-forming galaxies using a mixture of stellar populations, and taking into account the observational uncertainties. We assume a recent burst of star formation superimposed on a more evolved population. The effects of the nebular continuum, line emission and dust attenuation are taken into account. We also test different model assumptions, including the choice of specific evolutionary synthesis model, initial mass function, star formation scenario and the treatment of dust extinction. Quantitative tests are applied to determine how well these models fit our multiwavelength observations for the UCM sample. Our observations span the optical and near-infrared, including both photometric and spectroscopic data. Our results indicate that extinction plays a key role in this kind of study, revealing that low- and high-obscured objects may require very different extinction laws and must be treated differently. We also demonstrate that the UCM Survey galaxies are best described by a short burst of star formation occurring within a quiescent galaxy, rather than by continuous star formation. A detailed discussion on the inferred parameters, such as the age, burst strength, metallicity, star formation rate, extinction and total stellar mass for individual objects, is presented in Paper II of this series.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available