4.6 Article

THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. I. A CENSUS OF DUSTY YOUNG STELLAR OBJECTS AND A STUDY OF THEIR MID-INFRARED VARIABILITY

Journal

ASTRONOMICAL JOURNAL
Volume 144, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-6256/144/6/192

Keywords

infrared: stars; ISM: individual objects (Orion A, Orion B); stars: formation; stars: variables: T Tauri, Herbig Ae/Be

Funding

  1. National Aeronautics and Space Administration [960541, 960785]
  2. National Science Foundation

Ask authors/readers for more resources

We present a survey of the Orion A and B molecular clouds undertaken with the IRAC and MIPS instruments on board Spitzer. In total, five distinct fields were mapped, covering 9 deg(2) in five mid-IR bands spanning 3-24 mu m. The survey includes the Orion Nebula Cluster, the Lynds 1641, 1630, and 1622 dark clouds, and the NGC 2023, 2024, 2068, and 2071 nebulae. These data are merged with the Two Micron All Sky Survey point source catalog to generate a catalog of eight-band photometry. We identify 3479 dusty young stellar objects (YSOs) in the Orion molecular clouds by searching for point sources with mid-IR colors indicative of reprocessed light from dusty disks or infalling envelopes. The YSOs are subsequently classified on the basis of their mid-IR colors and their spatial distributions are presented. We classify 2991 of the YSOs as pre-main-sequence stars with disks and 488 as likely protostars. Most of the sources were observed with IRAC in two to three epochs over six months; we search for variability between the epochs by looking for correlated variability in the 3.6 and 4.5 mu m bands. We find that 50% of the dusty YSOs show variability. The variations are typically small (similar to 0.2 mag) with the protostars showing a higher incidence of variability and larger variations. The observed correlations between the 3.6, 4.5, 5.8, and 8 mu m variability suggests that we are observing variations in the heating of the inner disk due to changes in the accretion luminosity or rotating accretion hot spots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available