4.5 Article

Increased Sp1 phosphorylation as a mechanism of hepatocyte growth factor (HGF/SF)-induced vascular endothelial growth factor (VEGF/VPF) transcription

Journal

JOURNAL OF CELL SCIENCE
Volume 116, Issue 2, Pages 225-238

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.00237

Keywords

neovascularization; endothelial growth factors; HGF/SF; VEGF/VPF; transcription factors; trans-activation; signal transduction; promoter regions

Categories

Ask authors/readers for more resources

Hepatocyte growth factor (HGF/SF)-induced expression of vascular endothelial growth factor (VEGF/VPF) has been implicated in paracrine amplification of angiogenesis, contributing to angiogenic responses during inflammation, wound healing, collateral formation and tumor growth. We have shown previously that HGF/SF-mediated VEGF/VPF expression by keratinocytes is primarily dependent on transcriptional activation, and we mapped the HGF/SF-responsive element to a GC-rich region between bp-88 and -65. Sp1-like factors bind to this element constitutively; however the VEGF/VPF promoter is transactivated by HGF/SF in the absence of induced binding activity. In experimental approaches to clarify molecular mechanisms of Sp1-dependent VEGF/VPF gene transcription, neither HGF/SF-dependent changes in nuclear expression nor in relative DNA binding activity of Sp family members to the indicated element were observed. Thus, HGF/SF was hypothesized to induce VEGF/VPF gene transcription via increased transactivation activity of Sp1 owing to biochemical modification. In immunoprecipitation studies, HGF/SF was found to increase the amount of serine-phosphorylated Sp1, revealing a likely mechanism of HGF/SF-induced VEGF/VPF expression, as phosphorylation may enhance the transcriptional activity of Sp1. The contribution of different signaling molecules to HGF/SF-induced VEGF/VPF transcription was demonstrated by the use of chemical inhibition, of expression of kinase-deficient signaling proteins, and by the use of antisense oligonucleotides. Herein, we provide evidence that PI 3-kinase, MEK1/2 and PKC-xi play a significant role in HGF/SF-induced VEGF/VPF promoter activation. Together, our results elucidate a critical pathway of paracrine amplification of angiogenesis, suggesting that HGF/SF-induced Sp1 phosphorylation may activate VEGF/VPF promoter activity that requires the contribution of distinct signaling molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available