4.8 Article

Accurate first principles prediction of 17O NMR parameters in SiO2:: Assignment of the zeolite ferrierite spectrum

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 125, Issue 2, Pages 541-548

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja027124r

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [GR/R76059/01] Funding Source: researchfish

Ask authors/readers for more resources

O-17 NMR parameters, both the chemical shifts and the quadrupolar parameters, are calculated for SiO2 polymorphs using density functional theory with the generalized gradient-corrected PBE functional. The gauge including projector augmented wave (GIPAW) method (Pickard, C. J.; Mauri, F. Phys. Rev. B 2001, 63, 245101) ensures the reproduction of all electron results while using computationally efficient pseudopotentials. The use of plane-waves permits fully converged calculations to be performed on structures containing 144 atoms in the unit cell, without the need to resort to the cluster approximation. The calculated NMR parameters of cristobalite, quartz, coesite, and faujasite are in excellent agreement with experimental data. This demonstrates that density functional theory is able to reproduce with high accuracy the O-17 NMR parameters in SiO2 systems. This precision is used to assign the spectrum of the zeolite ferrierite. The data calculated for SiO2 are used to confirm that no simple correlation between the chemical shift and Cq NMR parameters and Si-O-Si angle exists, emphasizing the importance of predictive theories in this field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available