4.6 Article

Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 546, Issue 2, Pages 327-335

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1113/jphysiol.2002.034223

Keywords

-

Ask authors/readers for more resources

We determined whether mitogen-activated protein kinase (MAPK) and 5'-AMP-activated protein kinase (AMPK) signalling cascades are activated in response to intense exercise in skeletal muscle from six highly trained cyclists (peak O-2 uptake (V-O2,V-peak) 5.14 +/- 0.1 l min(-1)) and four control subjects (V-O2,V-peak 3.8 +/- 0.11 min(-1)) matched for age and body mass. Trained subjects completed eight 5 min bouts of cycling at similar to85% of V-O2,V-peak with 60 s recovery between work bouts. Control subjects performed four 5 min work bouts commencing at the same relative, but a lower absolute intensity, with a comparable rest interval. Vastus lateralis muscle biopsies were taken at rest and immediately after exercise. Extracellular regulated kinase (ERK1/2), p38 MAPK, histone H3, AMPK and acetyl CoA-carboxylase (ACC) phosphorylation was determined by immunoblot analysis using phosphospecific antibodies. Activity of mitogen and stress-activated kinase 1 (MSK1; a substrate of ERK1/2 and p38 MAPK) and alpha(1) and alpha(2) subunits of AMPK were determined by immune complex assay. ERK1/2 and p38 MAPK phosphorylation and MSK1 activity increased (P < 0.05) after exercise 2.6-, 2.1- and 2.0-fold, respectively, in control subjects and 1.5-, 1.6- and 1.4-fold, respectively, in trained subjects. Phosphorylation of histone H3, a substrate of MSK1, increased (P < 0.05) similar to1.8-fold in both control and trained subject. AMPKalpha(2) activity increased (P < 0.05) after exercise 4.2- and 2.3-fold in control and trained subjects, respectively, whereas AMPKalpha(1) activity was not altered. Exercise increased ACC phosphorylation (P < 0.05) 1.9- and 2.8-fold in control and trained subjects. In conclusion, intense cycling exercise in subjects with a prolonged history of endurance training increases MAPK signalling to the downstream targets MSK1 and histone H3 and isoform-specific AMPK signalling to ACC. Importantly, exercise-induced signalling responses were greater in untrained men, even at the same relative exercise intensity, suggesting muscle from previously well-trained individuals requires a greater stimulus to activate signal transduction via these pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available