4.6 Article

STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 3, Pages 1671-1679

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M207289200

Keywords

-

Funding

  1. NCI NIH HHS [CA71449, CA39438] Funding Source: Medline
  2. NICHD NIH HHS [P30-HD28934] Funding Source: Medline

Ask authors/readers for more resources

Overexpression of the epidermal growth factor receptor (EGFR) and its association with the tyrosine kinase, c-Src, is correlated with increased cellular proliferation and tumorigenesis. Previous studies have shown that EGFR and c-Src co-overexpression and association leads to the c-Src-mediated phosphorylation of tyrosine 845 of the EGFR and that mutation of Tyr(845) ablates epidermal growth factor (EGF)-induced DNA synthesis. Here, we investigate the contribution of the signal transducers and activators of transcription (STAT5b) in the signaling pathways regulated by EGFR and c-Src overexpression in human breast tumor cell lines as well as in a mouse fibroblast model (C3H10T1/2). We demonstrate that 1) activation of STAT5b by EGF requires overexpression of the EGFR, 2) co-overexpression of c-Src alone does not result in EGF-induced activation of STAT5b but enhances that seen in EGFR-overexpressing cells, and 3) EGF-induced tyrosine phosphorylation of STAT5b requires Tyr845 of the EGFR. Furthermore, the stable overexpression of a kinase-defective c-Src in the context of EGFR overexpression results in a decrease in the tyrosine phosphorylation of STAT5b in response to EGF and a more dramatic decrease in EGF-induced transcriptional activation of STAT5b, suggesting an integral role for c-Src in the physiological actions of STAT5b. Using a dominant negative STAT5b, we provide evidence that one such physiological action is to mediate EGF-induced DNA-synthesis. Finally, the use of site-specific tyrosine mutants demonstrates that EGF-induced phosphorylation of STAT5b involves not only tyrosine 699 of STAT5b, which is required for its transcriptional activation, but also three previously identified tyrosines in the C terminus of STAT5b (Tyr(725)/Tyr(740)/Tyr(743)).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available