4.7 Article

Tsunami run-up and draw-down on a plane beach

Journal

JOURNAL OF FLUID MECHANICS
Volume 475, Issue -, Pages 79-99

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112002002653

Keywords

-

Ask authors/readers for more resources

Tsunami run-up and draw-down motions on a uniformly sloping beach are evaluated based on fully nonlinear shallow-water wave theory. The nonlinear equations of mass conservation and linear momentum are first transformed to a single linear hyperbolic equation. To solve the problem with arbitrary initial conditions, we apply the Fourier-Bessel transform, and inversion of the transform leads to the Green function representation. The solutions in the physical time and space domains are then obtained by numerical integration. With this semi-analytic solution technique, several examples of tsunami run-up and draw-down motions are presented. In particular, detailed shoreline motion, velocity field, and inundation depth on the shore are closely examined. It was found that the maximum flow velocity occurs at the moving shoreline and the maximum momentum flux occurs in the vicinity of the extreme draw-down location. The direction of both the maximum flow velocity and the maximum momentum flux depend on the initial waveform: it is in the inshore direction when the initial waveform is predominantly depression and in the offshore direction when the initial waves have a dominant elevation characteristic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available