4.6 Article

The feasibility of monitoring CO2 from high-resolution infrared sounders -: art. no. 4064

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
Volume 108, Issue D2, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2001JD001443

Keywords

retrieval of carbon dioxide; climate monitoring; AIRS; IASI; IMG

Ask authors/readers for more resources

Satellite instruments specifically designed to monitor atmospheric carbon dioxide concentrations have not been flown to date but, high-resolution infrared sounders, being launched in the next few years, may offer the possibility of at least a basic carbon dioxide monitoring capability. This paper explores the sensitivity of this new generation of advanced infrared sounders to changing carbon dioxide concentrations and also compares this with uncertainties due to the atmospheric temperature, water vapor, and minor constituent concentrations using the current background errors in numerical weather prediction models as a baseline. The sensitivity results shown are computed for the Infrared Atmospheric Sounding Interferometer (IASI), which is due to fly on the European METOP platform from 2005. We show that although the carbon dioxide signal is below or at the instrument noise for IASI and that uncertainties in temperature and water vapor errors can dominate, a careful averaging of the retrieved carbon dioxide fields over areas of 500 x 500 km(2) and 2 weeks should be able to extract changes at the level of 1% or less in the total column carbon dioxide amount. We also show results of an information content study for the Atmospheric InfraRed Sounder, AIRS, data, which suggests 50 channels are adequate for inferring the tropospheric carbon dioxide amounts but that they are not sensitive to CO2 changes in the boundary layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available