4.4 Article

Hybrid QM/MM molecular dynamics simulations for an ionic SN2 reaction in the supercritical water:: OH-+CH3Cl→CH3OH+Cl-

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 24, Issue 2, Pages 209-221

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jcc.10134

Keywords

hybrid quantum mechanical/molecular mechanical method; real space grids; density functional theory; S(N)2 reaction; supercritical water

Ask authors/readers for more resources

A hybrid real space quantum mechanical/molecular mechanical (RS-QM/MM) method has been applied to an ionic S(N)2 reaction (OH- + CH3Cl --> CH3OH + Cl-) in water solution to investigate dynamic solvation effects of the supercritical water (SCW) on the reaction. It has been demonstrated that the approaching process of OH- to methyl group is prevented by water molecules in the ambient water (AW), while the reaction takes place easily in the gas phase. Almost the same solvation effect on the dynamics of OH- is observed in the SCW, though the bulk density of water is substantially reduced compared with that of the AW. It has been shown that the solvation of the SCW around the OH anion is locally identical to that of the AW due to the strong ion-dipole interactions between OH- and water molecules. At the transition state, the QM/MM simulations have revealed that the excess electron is quite flexible, and the charge volume, as well as the fractional charges on atoms, vary seriously depending on the instantaneous solvent configurations. However, it has been found that the solvation energy in the SCW can be qualitatively related to the HOMO volume of the system by Born's equation, (C) 2002 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available