4.5 Article

Interactions of the mix-linked β-(1,3)/β-(1,4)-D-xylans in the cell walls of Palmaria palmata (Rhodophyta)

Journal

JOURNAL OF PHYCOLOGY
Volume 39, Issue 1, Pages 74-82

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1529-8817.2003.02047.x

Keywords

cell wall; H-bonds; Palmaria; phosphate; sulfate; xylan

Ask authors/readers for more resources

Algal cell wall mechanical properties, crucial for biological functions and commercial applications, rely on interactions in macromolecular assemblies. In an effort to better understand the interactions of the matrix-phase beta-(1,3)/(1,4)-d-xylan in the edible seaweed Palmaria palmata ((L.) O. Kuntze, Rhodophyta, Palmariales), sequential extractions by saline, alkaline, and chaotropic solutions were done. The chemical composition and structure and the physicochemical properties of the isolated xylan revealed that it was partly acidic, probably due to the presence of sulfate (up to 5%) and phosphate groups (up to 4%). Although such acidity suggested ionic interactions of xylan in the cell walls, the high yields of polysaccharide extracted by alkali and particularly by 8 M urea and 4.5 M guanidium thiocyanate demonstrated that it was mainly hydrogen bonded in the cell wall. H-bonds did not appear to be related to the mean proportions of beta-(1,3) and beta-(1,4)-d-xylose linkages because these did not differ between extracts of increasing alkalinity. However, the decreasing molar weight and intrinsic viscosity of extracts obtained by alkaline solution containing a reducing agent used to prevent polysaccharide degradation suggested the presence of an alkali-labile component in the xylan. These results are discussed with regard to the role of potential wall proteins as a means of control of these interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available