4.6 Article

Structural and optical properties of nanophase zinc oxide

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 76, Issue 2, Pages 171-176

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s003390201404

Keywords

-

Ask authors/readers for more resources

Nanophase zinc oxide samples were synthesized by a two-step solid-state reaction method. The phase structure and microstructure were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The vibrational Raman spectra were compared with those from the bulk and their grain size dependence was also examined. Their photoelectric behavior was studied by X-ray photoelectron spectroscopy (XPS). The peaks at 1044.5 and 1021.4 eV were recorded as corresponding to the respective binding energies of Zn2p(1/2) and Zn 2p(3/2), and the photoelectron spectrum of O1s in the as-prepared powder was located at 531.2 eV. A strong visible emission centered at 580 nm was clearly observed in the nanosized zinc oxide at room temperature. Photoluminescence (PL) spectra were investigated as a function of grain size after different heat treatments. The origin of the luminescence is attributed to the recombination of electrons in singly occupied oxygen vacancies with photoexcited holes in the valence band.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available