4.4 Article

Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa

Journal

JOURNAL OF BACTERIOLOGY
Volume 185, Issue 3, Pages 1071-1081

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.3.1071-1081.2003

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [R01 AI031139, AI 31139] Funding Source: Medline

Ask authors/readers for more resources

Pseudomonas aeruginosa is the dominant pathogen causing chronic respiratory infections in cystic fibrosis (CF). After an initial phase characterized by intermittent infections, a chronic colonization is established in CF upon the conversion of P. aeruginosa to the mucoid, exopolysaccharide alginate-overproducing phenotype. The emergence of mucoid P. aeruginosa in CF is associated with respiratory decline and poor prognosis. The switch to mucoidy in most CF isolates is caused by mutations in the mucA gene encoding an anti-sigma factor. The mutations in mucA result in the activation of the alternative sigma factor AlgU, the P. aeruginosa ortholog of Escherichia coli extreme stress sigma factor sigma(E). Because of the global nature of the regulators of mucoidy, we have hypothesized that other genes, in addition to those specific for alginate production, must be induced upon conversion to mucoidy, and their production may contribute to the pathogenesis in CF. Here we applied microarray analysis to identify on the whole-genome scale those genes that are coinduced with the AlgU sigmulon upon conversion to mucoidy. Gene expression profiles of AlgU-dependent conversion to mucoidy revealed coinduction of a specific subset of known virulence determinants (the major protease elastase gene, alkaline metalloproteinase gene aprA, and the protease secretion factor genes aprE and aprF) or toxic factors (cyanide synthase) that may have implications for disease in CF. Analysis of promoter regions of the most highly induced genes (>40-fold, P less than or equal to 10(-4)) revealed a previously unrecognized, putative AlgU promoter upstream of the osmotically inducible gene osmE. This newly identified AlgU-dependent promoter of osmE was confirmed by mapping the mRNA 5' end by primer extension. The recognition of genes induced in mucoid P. aeruginosa, other than those associated with alginate biosynthesis, reported here revealed the identity of previously unappreciated factors potentially contributing to the morbidity and mortality caused by mucoid P. aeruginosa in CF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available