4.7 Article

Nonthermal radiation from clusters of galaxies: The role of merger shocks in particle acceleration

Journal

ASTROPHYSICAL JOURNAL
Volume 583, Issue 2, Pages 695-705

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/345429

Keywords

acceleration of particles; galaxies : clusters : general; radiation mechanisms : nonthermal; shock waves

Ask authors/readers for more resources

Nonthermal radiation is observed from clusters of galaxies in the radio, hard X-rays, and possibly in the soft X-ray/UV bands. While it is known that radiative processes related to nonthermal electrons are responsible for this radiation, the sites and nature of particle acceleration are not known. We investigate here the acceleration of protons and electrons in the shocks that originated during mergers of clusters of galaxies, where the Fermi acceleration may work. We propose a semianalytical model to evaluate the Mach number of the shocks generated during cluster mergers, and we use this procedure to determine the spectrum of the accelerated particles for each one of the shocks produced during the merger history of a cluster. We follow the proton component, accumulated over cosmological timescales, and the short-lived electron component. We conclude that efficient particle acceleration, resulting in nonthermal spectra that compare with observations, occurs mainly in minor mergers, namely, mergers between clusters with very different masses. Major mergers, often invoked to be sites for the production of extended radio halos, are found to have on average too weak of shocks and are unlikely to result in appreciable nonthermal activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available