4.7 Article

Role of p44/p42 MAP kinase in the age-dependent increase in vascular smooth muscle cell proliferation and neointimal formation

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 23, Issue 2, Pages 204-210

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.ATV.0000053182.58636.BE

Keywords

astherosclerosis; aging; vascular smooth muscle cell proliferation; mitogen-activated protein kinase

Ask authors/readers for more resources

Objective-Age-dependent increase in vascular smooth muscle cell (VSMC) proliferation is thought to contribute to the pathology of atherosclerotic diseases. In this study, we investigated the role of mitogen-activated protein kinases (MAPKs) on VSMC proliferation and neointimal formation in the context of aging. Methods and Results-VSMCs were isolated from the aorta of young and old rabbits. The proliferative index after serum stimulation was significantly increased in old versus young VSMCs. This was associated with a significant and specific age-dependent increase in p44/p42 MAPK activation. Treatment with MEK inhibitor PD98059 successfully inhibited p44/p42 MAPK activities and VSMC proliferation. These results were confirmed in vivo using a model of balloon injury in rabbit iliac arteries. p44/p42 MAPK activities were rapidly induced by angioplasty in young and old animals. However, the levels of p44/p42 MAPK activities achieved in arteries of old rabbits were significantly higher than those of young rabbits. This was associated with a higher cellular proliferative index and a significant increase in neointimal formation in old animals. Local delivery of PD98059 in old rabbits successfully inhibited p44/p42 MAPK activities after angioplasty, which led to a significant reduction in cellular proliferation and neointimal formation in treated animals. Conclusions-Our study suggests for the first time that increased p44/p42 MAPK activation contributes to augmented VSMC proliferation and neointimal formation with aging. p44/p42 MAPK inhibition could represent a novel therapeutic avenue against atherosclerotic diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available