4.6 Article

Heat shock induces intestinal-type alkaline phosphatase in rat IEC-18 cells

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00244.2002

Keywords

isozyme; heat shock protein; sodium arsenite; glutathione

Ask authors/readers for more resources

We demonstrate a previously unknown regulation for intestinal-type alkaline phosphatase (IAP) as a heat shock protein (HSP). Heat shock to rat intestinal epithelial cells (IEC)-18 at 43degreesC induced the expression of IAP-I and HSP72 mRNAs time dependently (<60 min) but did not induce expression of IAP-II, tissue nonspecific-type alkaline phosphatase (TNAP), or HSP90 as determined by the RTPCR method. To confirm the identity of the IAP-I gene, we sequenced the amplification product of IAP-I and found the gene to have 99% homology with the sequence of the IAP-I gene in rat intestine. Under the subculture conditions used, no IAP protein was detected in IEC-18 cells, but it became detectable as a 62-kDa band on a Western blot after heat shock. IAP-I was also induced by sodium arsenite, which generates reactive oxygen species and is an inducer of members of the HSP family. Glutathione suppressed activating protein-1 and cAMP response element-binding protein activation caused by heat shock but did not suppress the expression of IAP-I. These results suggest that cellular stress induces the elevation of IAP-I mRNA and protein synthesis. IAP-I may play an important role as a dephosphorylating enzyme under stress conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available