4.7 Article

Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US

Journal

RENEWABLE ENERGY
Volume 28, Issue 2, Pages 271-293

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0960-1481(02)00022-8

Keywords

building integrated photovoltaics (BIPV); life cycle assessment; energy performance; air pollution prevention

Ask authors/readers for more resources

Building integrated photovoltaics (BIPV) perform traditional architectural functions of walls and roofs while also generating electricity. The displacement of utility generated electricity and conventional building materials can conserve fossil fuels and have environmental benefits. A life cycle inventory model is presented that characterizes the energy and environmental performance of BIPV systems relative to the conventional grid and displaced building materials. The model is applied to an amorphous silicon PV roofing shingle in different regions across the US. The electricity production efficiency (electricity output/total primary energy input excluding insolation) for a reference BIPV system (2kW(p) PV shingle system with a 6% conversion efficiency and 20 year life) ranged from 3.6 in Portland OR to 5.9 in Phoenix, AZ indicating a significant return on energy investment. The reference system had the greatest air pollution prevention benefits in cities with conventional electricity generation mixes dominated by coal and natural gas, not necessarily in cities where the insolation and displaced conventional electricity were greatest. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available