4.7 Article

Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions

Journal

ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY
Volume 23, Issue 2, Pages 238-243

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.ATV.0000051405.68811.4D

Keywords

mast cell; smooth muscle cell; apoptosis; chymase; focal adhesion kinase

Ask authors/readers for more resources

Objective-Chymase released from activated mast cells has been shown to induce apoptosis of vascular smooth muscle cells (SMCs) in vitro. The proteolytic activity of chymase is essential for the proapoptotic effect, but the mechanism of chymase-induced apoptosis has remained unknown. \ Methods and Results-Here we show by means of FACS analysis, immunohistochemistry, and Western blotting that mast cell-derived chymase induces SMC apoptosis by a mechanism involving degradation of an extracellular matrix component, fibronectin (FN), with subsequent disruption of focal adhesions. The FN degradation products induced SMC apoptosis of similar magnitude and with similar changes in outside-in signaling, as did chymase. Sodium orthovanadate, an inhibitor of tyrosine phosphatases, inhibited the chymase-induced SMC apoptosis. Focal adhesion kinase (FAK), one of the key mediators of integrin-extracellular matrix interactions and cell survival, was rapidly degraded in the presence of chymase or FN degradation products. Loss of phosphorylated FAK (p-FAK) resulted in a rapid dephosphorylation of the p-FAK-dependent downstream mediator Akt. Conclusions-The results suggest that chymase-secreting mast cells can mediate apoptosis of neighboring SMCs through a mechanism involving degradation of pericellular FN and disruption of the p-FAK-dependent cell-survival signaling cascade.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available