4.5 Article

Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 64A, Issue 2, Pages 273-281

Publisher

WILEY
DOI: 10.1002/jbm.a.10370

Keywords

alginate beads; biomaterials; chondrogenesis; in vitro; mesenchymal stem cells (MSCs)

Ask authors/readers for more resources

Mesenchymal stem cells (MSCs) have the capacity for self-renewal and can form bone, fat, and cartilage. Alginate forms a viscous solution when dissolved in 0.9% saline and gels on contact with divalent cations. The viability and phenotype maintenance of chondrocytes in alginate beads have been well documented. However, little is known about the effect of microencapsulation in alginate on chondrogenesis of MSCs. In this study, human MSCs encapsulated in alginate beads were cultured in serum-free medium with the addition of transforming growth factor (TGF)beta1 (10 ng/mL), dexamethasone (10(-7) M), and ascorbate 2-phosphate (50 mug/ml,). The MSCs in alginate assumed a rounded morphology with lacunae around them after I week in culture. Cell aggregates were observed at 2 weeks or longer in culture. Histological findings agreed with the clinical determination of hyaline cartilage, characterized by isolated cells with ground substance positive in Safranin-O staining and immunohistochemistry for collagen type 11 at the periphery of cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the expression of COL2A1 and COL10A1, marker of chondrocytes and hypertrophy chondrocytes, respectively. These results indicate MSCs in alginate can form cartilage and the MSCs-alginate system represents a relevant model for the study of the molecular mechanisms involved in the chondrogenesis and endochondral ossification. (C) 2002 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available