4.3 Article Proceedings Paper

Electrochemical properties of nanoporous carbon electrodes in various nonaqueous electrolytes

Journal

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
Volume 7, Issue 2, Pages 91-105

Publisher

SPRINGER
DOI: 10.1007/s10008-002-0316-1

Keywords

electrical double layer; nanoporous carbon; zero charge potential; nonaqueous electrolyte solution

Ask authors/readers for more resources

Electrical double layer and electrochemical characteristics at the nanoporous carbon/acetonitrile interface with additions of Et4NBF4, Et3MeNBF4, EtMe3NBF4, LiClO4, and LiBF4 have been studied by cyclic voltammetry and impedance spectroscopy methods. A value of zero charge potential, dependent on the structure of the cations as well as on the composition of the anions, the region of ideal polarizability, and other characteristics has been established. Analysis of the complex plane plots shows that the nanoporous carbon/acetonitrile + 0.1 M electrolyte (Et4NBF4, Et3MeNBF4, or EtMe3NBF4) interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of the hindered reaction of the charge transfer process or of the partial charge transfer (i.e. adsorption stage limited) process. The values of the characteristic frequency depend on the electrolyte composition and on the electrode potential, i.e. on the nature of the ions adsorbed at the surface of the nanoporous carbon electrode. In the region of moderate a.c. frequencies, the modified Randles-like equivalent circuit has been used for simulation of the complex plane plots. In the region of negative surface charge densities, the intercalation process of Li+ ions from LiClO4 and LiBF4 solutions into the surface film is possible and these data can be simulated using the modified Ho et al. model or Meyer et al. model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available