4.4 Article Proceedings Paper

Looking at nature as a computer

Journal

INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
Volume 42, Issue 2, Pages 309-327

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1024403618093

Keywords

information; entropy; energy; action; cellular automaton; quantum mechanics

Ask authors/readers for more resources

Although not always identified as such, information has been a fundamental quantity in Physics since the advent of Statistical Mechanics, which recognized counting states as the fundamental operation needed to analyze thermodynamic systems. Quantum Mechanics (QM) was invented to fix the infinities that arose classically in trying to count the states of Black Body radiation. In QM, both amount and rate of change of information in a finite physical system are finite. As Quantum Statistical Mechanics developed, classical finite-state models naturally played a fundamental role, since only the finite-state character of the microscopic substratum normally enters into the macroscopic counting. Given more than a century of finite-state underpinnings, one might have expected that by now all of physics would be based on informational and computational concepts. That this isn't so may simply reflect the stubborn legacy of the continuum, and the recency and macroscopic character of computer science. In this paper, I discuss the origins of informational concepts in physics, and reexamine computationally some fundamental dynamical quantities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available