4.7 Review

Redox control on the cell surface: Implications for HIV-1 entry

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 5, Issue 1, Pages 133-138

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/152308603321223621

Keywords

-

Ask authors/readers for more resources

Proteins that work outside cells nearly always contain disulfide bonds. The prevailing view is that these bonds have been added during evolution to enhance protein stability. Recent evidence suggests that disulfide bonds can also control protein function. Certain secreted proteins contain one or more disulfide bonds that can control function by breaking and reforming in a controlled way. This review focuses on disulfide exchange events on the cell surface, with a particular reference to two proteins involved in HIV-1 infection. The primary HIV-1 receptor on immune cells, CD4, and the viral envelope glycoprotein, gp120, play a central role in HIV-1 entry. Redox change in a disulfide bond or bonds in one or both of these proteins appears to be important for HIV-1 entry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available