4.5 Article

The dihydrofolate reductase origin of replication does not contain any nonredundant genetic elements required for origin activity

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 23, Issue 3, Pages 804-814

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.23.3.804-814.2003

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM26108, R01 GM026108] Funding Source: Medline

Ask authors/readers for more resources

The Chinese hamster dihydrofolate reductase (DHFR) origin of replication consists of a broad zone of potential initiation sites scattered throughout a 55-kb intergenic spacer, with at least three sites being preferred (ori-beta, ori-beta', and ori-gamma). We previously showed that deletion of the most active site or region (ori-beta) has no demonstrable effect on initiation in the remainder of the intergenic spacer nor on the time of replication of the DHFR locus as a whole. In the present study, we have now deleted ori-beta', both ori-beta and ori-beta', an 11-kb region just downstream from the DHFR gene, or the central similar to40-kb core of the spacer. The latter two deletions together encompass >95% of the initiation sites that are normally used in this locus. Two-dimensional gel analysis shows that initiation still occurs in the early S phase in the remainder of the intergenic spacer in each of these deletion variants. Even removal of the 40-kb core fails to elicit a significant effect on the time of replication of the DHFR locus in the S period; indeed, in the truncated spacer that remains, the efficiency of initiation actually appears to increase relative to the corresponding region in the wild-type locus. Thus, if replicators control the positions of nascent strand start sites in this complex origin, either (i) there must be a very large number of redundant elements in the spacer, each of which regulates initiation only in its immediate environment, or (ii) they must lie outside the central core in which the vast majority of nascent strand starts occur.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available