4.8 Article

Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO2 Core Shell Nanorods on Flat Alumina Substrates

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 34, Pages 19163-19171

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b04904

Keywords

Au-SnO2/ZnO nanorod; Schottky contact; N-N heterojunction; TEA sensor; near room-temperature

Funding

  1. NSFC [11174112]
  2. Shandong Provincial Science Foundation [JQ201214, 2014ZRB019JP, ZR2015BQ006]
  3. Ministry of Education, China [NCET-11-1027, 213021A]

Ask authors/readers for more resources

Chemiresistive gas sensors with low power consumption, fast response, and reliable fabrication process for a specific target gas have been now created for many applications. They require both sensitive nanomaterials and an efficient substrate chip for heating and electrical addressing. Herein, a near room working temperature and fast response triethylamine (TEA) gas sensor has been fabricated successfully by designing gold (Au)-loaded ZnO/SnO2 core shell nanorods. ZnO nanorods grew directly on Al2O3 flat electrodes with a cost-effective hydrothermal process. By employing pulsed laser deposition (PLD) and DC-sputtering methods, the construction of Au nanopartide-loaded ZnO/SnO2 core/shell nanorod heterostructure is highly controllable and reproducible. In comparison with pristine ZnO, SnO2, and Au-loaded ZnO, SnO2 sensors, Au-ZnO/SnO2 nanorod sensors exhibit a remarkably high and fast response to TEA gas at working temperatures as low as 40 degrees C. The enhanced sensing property of the Au-ZnO/SnO2 sensor is also discussed with the semiconductor depletion layer model introduced by Au-SnO2 Schottky contact and ZnO/SnO2 N N heterojunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available