4.7 Article

Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 284, Issue 2, Pages C562-C570

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00336.2002

Keywords

mitochondria; bioenergetics; hypertrophy; genetic models of heart failure

Funding

  1. NHLBI NIH HHS [HL-61518] Funding Source: Medline
  2. NIDDK NIH HHS [DK-07022] Funding Source: Medline

Ask authors/readers for more resources

Introduction of the constitutively active calcineurin gene into neonatal rat cardiomyocytes by adenovirus resulted in decreased mitochondrial membrane potential (P<0.05). Infection of H9c2 cells with calcineurin adenovirus resulted in increased superoxide production (P<0.001). Transgenic mice with cardiac-specific expression of a constitutively active calcineurin cDNA (CalTG mice) exhibit a two-to threefold increase in heart size that progresses to heart failure. We prepared mitochondria enriched for the subsarcolemmal population from the hearts of CalTG mice and transgene negative littermates (control). Intact, well-coupled mitochondria prepared from one to two mouse hearts at a time yielded sufficient material for functional studies. Mitochondrial oxygen consumption was measured with a Clark-type oxygen electrode with substrates for mitochondrial complex II (succinate) and complex IV [tetramethylpentadecane (TMPD)/ascorbate]. CalTG mice exhibited a maximal rate of electron transfer in heart mitochondria that was reduced by similar to50% (P<0.002) without a loss of respiratory control. Mitochondrial respiration was unaffected in tropomodulin-overexpressing transgenic mice, another model of cardiomyopathy. Western blotting for mitochondrial electron transfer subunits from mitochondria of CalTG mice revealed a 20-30% reduction in subunit 3 of complex I (ND3) and subunits I and IV of cytochrome oxidase (CO-I, CO-IV) when normalized to total mitochondrial protein or to the adenine nucleotide transporter (ANT) and compared with littermate controls (P<0.002). Impaired mitochondrial electron transport was associated with high levels of superoxide production in the CalTG mice. Taken together, these data indicate that calcineurin signaling affects mitochondrial energetics and superoxide production. The excessive production of superoxide may contribute to the development of cardiac failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available