4.4 Article

Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 89, Issue 2, Pages 773-784

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00716.2002

Keywords

-

Ask authors/readers for more resources

Projections of sacrocaudal afferents (SCA) onto lumbar pattern generators were studied in isolated spinal cords of neonatal rats. A locomotor-like pattern could be produced by SCA stimulation in the majority of the preparations. The SCA-induced lumbar rhythm was abolished after blocking synaptic transmission in the sacrococcygeal (SC) cord by bathing its segments in a low-calcium, high-magnesium artificial cerebrospinal fluid and restored when the synaptic block was alleviated by local application of calcium onto specific SC segments prior to SCA stimulation. Thus the SCA evoked lumbar rhythm involves synaptic activation of relay neurons in the SC cord. Functional activation of these relays depends on non-N-methyl-D-aspartate (NMDA) receptors because the lumbar rhythm was abolished when the non-NMDA receptor antagonist CNQX was added to the SC cord. By contrast, pharmacological block of the rhythmicity in the SC cord by specific antagonists of NMDA receptors and alpha1 and alpha2 adrenoceptors did not impair the SCA-induced lumbar rhythm. Midsagittal splitting experiments of parts of the SC and lumbar cord revealed that crossed and uncrossed ascending/propriospinal pathways are coactivated by SCA stimulation. We suggest that these pathways ascend onto the thoracolumbar cord through the lateral, ventrolateral, and ventral funiculi, because a complete block of the lumbar rhythm could only be obtained with a bilateral interruption of all of these funiculi. The relevance of our findings to the neural control of the rhythmogenic networks in the spinal cord is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available