4.5 Article

A single origin of plastids revisited: Convergent evolution in organellar genome content

Journal

JOURNAL OF PHYCOLOGY
Volume 39, Issue 1, Pages 95-105

Publisher

WILEY
DOI: 10.1046/j.1529-8817.2003.02070.x

Keywords

convergent evolution; Cyanophora; endosymbiotic; Marchantia; mitochondrion; Porphyra; plastid origin; Reclinomonas; ribosomal protein; tRNA

Ask authors/readers for more resources

In recent years a consensus has emerged from molecular phylogenetic investigations favoring a common endosymbiotic ancestor for all chloroplasts. It is within this conceptual framework that most comparative analyses of eukaryotic biochemistry and genetics now are interpreted. One of the first and most influential sources of data leading to this consensus is the remarkable similarity in genome content among all major plastid lineages. Here we report statistical analyses of two sequence data sets, genes encoding ribosomal proteins and transfer RNAs, from representatives of the three primary plastid lineages and a mitochondrion. The latter almost certainly originated in an independent endosymbiotic association and serves as a control for similarity due to convergent evolution. When genes related to organelle-specific function are factored out, plastid genomes appear to be no more similar to each other than they are to the mitochondrion. Total similarities in gene content, measured as deviations from the expectation from a process of random gene loss, are correlated with the extent of reduction in the two genomes compared. They do not appear to reflect putative evolutionary relationships among plastids. These analyses indicate that similarities in plastid genome content are better explained by convergent evolution due to constraint on gene loss than by a shared evolutionary history. A review of other data cited as support for a single plastid origin suggests that the alternative hypothesis of multiple origins is at least equally consistent in most cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available