4.5 Article

Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo

Journal

OECOLOGIA
Volume 134, Issue 3, Pages 397-404

Publisher

SPRINGER
DOI: 10.1007/s00442-002-1115-1

Keywords

leaf area index; leaf morphology; litter fall; soil nutrients; Southeast Asia

Categories

Ask authors/readers for more resources

We have examined how the structure and function of a forest ecosystem change with topography (lower-slope versus ridge) and how the changes are modified by nutrient availability depending on geological substrate (Quaternary and Tertiary sedimentary rocks and ultrabasic rock) in the tropical montane rain forests of Mt. Kinabalu (Borneo) where climate is humid and aseasonal. Reflecting the difference in site age and parent rock, the pool size of soluble-P and inorganic-N in topsoils decreased from Quaternary sedimentary > Tertiary sedimentary > ultrabasic rock on the lower-slope, and they decreased from the lower-slope to the ridge on all substrates. Forest structural attributes [stature, above-ground biomass, and leaf area index (LAI)] decreased in the order of Quaternary sedimentary > Tertiary sedimentary > ultrabasic rock in association with soil nutrients on the lower-slopes, and decreased upslope consistently on each of the three substrates. Functional attributes [above-ground net primary productivity (ANPP) and decomposition rate] demonstrated similar patterns to structure. ANPP significantly correlated with LAI among the six sites, while net assimilation rate (AN-PP divided by LAI assuming an even productivity between above vs below-ground system) was nearly constant. Therefore, ANPP could be explained primarily by LAI. Topographical change in LAI could be explained by leaf mass per area (LMA) combined with stand-level leaf biomass. LMA increased upslope on all substrates in association with the decrease in individual leaf area. Stand-level leaf biomass decreased upslope on all substrates but the Tertiary sedimentary rock. Our study demonstrated that topography and geological substrates interactively affected forest structure and processes. The effect of topography on forest structure and processes was greater on nutrient-rich substrates than on poor substrates, and the effect of geological substrate was greater on lower-slopes than on ridges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available