4.5 Article

Protein kinase C phosphorylates ribosomal protein S6 kinase βII and regulates its subcellular localization

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 23, Issue 3, Pages 852-863

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.23.3.852-863.2003

Keywords

-

Ask authors/readers for more resources

The ribosomal protein S6 kinase (S6K) belongs to the AGC family of Ser/Thr kinases and is known to be involved in the regulation of protein synthesis and the G(1),/S transition of the cell cycle. There are two forms of S6K, termed S6Kalpha and S6Kbeta, which have cytoplasmic and nuclear splice variants. Nucleocytoplasmic shuttling has been recently proposed for S6Kalpha, based on the use of the nuclear export inhibitor, leptomycin B. However, the molecular mechanisms regulating subcellular localization of S6Ks in response to mitogenic stimuli remain to be elucidated. Here we present data on the in vitro and in vivo phosphorylation of S6Kbeta, but not S6Kalpha, by protein kinase C (PKC). The site of phosphorylation was identified as S486, which is located within the C-terminal nuclear localization signal. Mutational analysis and the use of phosphospecific antibodies provided evidence that PKC-mediated phosphorylation at S486 does not affect S6K activity but eliminates the function of its nuclear localization signal and causes retention of an activated form of the kinase in the cytoplasm. Taken together, this study uncovers a novel mechanism for the regulation of nucleocytoplasmic shuttling of S6KbetaII by PKC-mediated phosphorylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available