4.2 Article

Switching of vortex polarization in 2D easy-plane magnets by magnetic fields

Journal

EUROPEAN PHYSICAL JOURNAL B
Volume 31, Issue 4, Pages 471-487

Publisher

SPRINGER
DOI: 10.1140/epjb/e2003-00057-y

Keywords

-

Ask authors/readers for more resources

We investigate the dynamics of out-of-plane (OP) vortices, in a 2-dimensional (2D) classical Heisenberg magnet with a weak anisotropy in the coupling of z-components of spins (easy plane anisotropy), on square lattices, under the influence of a rotating in-plane (IP) magnetic field. Switching of the z-component of magnetization of the vortex is studied in computer simulations as a function of the magnetic field's amplitude and frequency. The effects of the size and the anisotropy of the system on the switching process are shown. An approximate dynamical equivalence of the system, in the bulk limit, to another system with both IP and OP static fields in the rotating reference frame is demonstrated, and qualitatively the same switching and critical behavior is obtained in computer simulations for both systems. We briefly discuss the interplay between finite size effects (image vortices) and the applied field in the dynamics of OP vortices. In the framework of a discrete reduced model of the vortex core we propose a mechanism for switching the vortex polarization, which can account qualitatively for all our results. A coupling between the IP movement (trajectories) of the vortex center and the OP core structure oscillations, due to the discreteness of the underlying lattice, is shown. A connection between this coupling and our reduced model is made clear, through an analogy with a generalized Thiele equation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available