4.6 Article

Vacancy concentration in Al from combined first-principles and model potential calculations -: art. no. 054101

Journal

PHYSICAL REVIEW B
Volume 67, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.67.054101

Keywords

-

Ask authors/readers for more resources

We present a comprehensive study of vacancy formation enthalpies and entropies in aluminum. The calculations are done in the framework of the local-density and generalized-gradient approximations in the density-functional formalism. To assess anharmonic contributions to the formation free energies, we use an interatomic potential with parameters determined from density-functional-theory calculations. We find that the binding energy for the nearest-neighbor divacancy is negative, i.e., it is energetically unstable. The entropy contributions slightly stabilize the divacancy but also the binding free energy at the melting temperature is found to be negative. We show that the anharmonic atomic vibrations explain the non-Arrhenius temperature dependence of the vacancy concentration in contrast to the commonly accepted interpretation of the experimental data in terms of the monovacancy-divacancy model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available