4.6 Article

The role of hydrogen bonding via interfacial water molecules in antigen-antibody complexation - The HyHEL-10-HEL interaction

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 7, Pages 5410-5418

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M210182200

Keywords

-

Ask authors/readers for more resources

To study the role of hydrogen bonding via interfacial water molecules in protein-protein interactions, we examined the interaction between hen egg white lysozyme (HEL) and its HyHEL-10 variable domain fragment (Fv) antibody. We constructed three antibody mutants (L-Y50F, L-S91A, and L-S93A) and investigated the interactions between the mutant Fvs and HEL. Isothermal titration calorimetry indicated that the mutations significantly decreased the negative enthalpy change (8-25 kJ mol(-1)), despite some offset by a favorable entropy change. X-ray crystallography demonstrated that the complexes had nearly identical structures, including the positions of the interfacial water molecules. Taken together, the isothermal titration calorimetric and x-ray crystallographic results indicate that hydrogen bonding via interfacial water enthalpically contributes to the Fv-HEL interaction despite the partial offset because of entropy loss, suggesting that hydrogen bonding stiffens the antigen-antibody complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available