4.6 Article

Essential role of the unusual DNA-binding motif of BAG-1 for inhibition of the glucocorticoid receptor

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 7, Pages 4926-4931

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M212000200

Keywords

-

Ask authors/readers for more resources

The co-chaperone BAG-1 is involved in the regulation of steroid hormone receptors, including the glucocorticoid receptor (GR). More recently, BAG-1 was found in the nucleus where it decreases GR transactivation. Moreover, nonspecific DNA binding of BAG-1 has been reported. We discovered that of the N-terminal part of BAG-1M, the first 8 amino acids are sufficient for DNA binding, containing a stretch of three lysines and a stretch of three arginines. Changing the spacing between these stretches had no effect on DNA binding. Surprisingly, this small, nonsequence-specific DNA binding domain was nonetheless necessary for the inhibitory function of BAG-1 for GR-dependent transcription, whereas the following serine- and threonine-rich E2X4 repeat domain was not. Mutational analysis of these two domains revealed that only mutants retaining DNA binding capability were able to down-regulate GR-mediated transactivation. Intriguingly, lack of DNA binding could not be functionally rescued by BAG-1M harboring a point mutation abolishing interaction with hsp70. Thus, DNA binding and hsp70 interaction are required in cis. We propose that the nonsequence-specific DNA-binding protein BAG-1 acts at specific chromosomal loci by interacting with other proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available