4.7 Article

Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 461, Issue 2-3, Pages 79-87

Publisher

ELSEVIER
DOI: 10.1016/S0014-2999(03)01309-8

Keywords

flavonoid; GABA (gamma-aminobutyric acid); GABA(A) receptor; GABA(C) receptor; benzodiazepine

Ask authors/readers for more resources

The modulation of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA-gated Cl- channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors expressed in Xenopus laevis oocytes in the micromolar range. alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors differ largely in their sensitivity to benzodiazepines, but they were similarly modulated by different flavonoids. Quercetin produced comparable actions on currents mediated by alpha(4)beta(2) neuronal nicotinic acetylcholine, serotonin 5-HT3A and glutamate AMPA/kainate receptors. Sedative and anxiolytic flavonoids, like chrysin or apigenin, failed to potentiate but antagonized alpha(1)beta(1)gamma(2s) GABA(A) receptors. Effects of apigenin and quercetin on alpha(1)beta(1)gamma(2s) GABA(A) receptors were insensitive to the benzodiazepine antagonist flumazenil. Results indicate that mechanism/s underlying the modulation of ionotropic GABA receptors by some flavonoids differs from that described for classic benzodiazepine modulation. (C) 2003 Elsevier Science B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available