4.7 Review

Characterization and function of mitochondrial nitricoxide synthase

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 34, Issue 4, Pages 397-408

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0891-5849(02)01298-4

Keywords

nitric oxide; mitochondria; free radicals; oxygen consumption; mitochondrial metabolism; nitric-oxide synthase

Funding

  1. NIEHS NIH HHS [ES011407-01] Funding Source: Medline

Ask authors/readers for more resources

The mitochondrial production of nitric oxide is catalyzed by a nitric-oxide synthase. This enzyme has the same cofactor and substrate requirements as other constitutive nitric-oxide synthases. Its occurrence was demonstrated in various mitochondrial preparations (intact, purified mitochondria, permeabilized mitochondria, mitoplasts, submitochondrial particles) from different organs (liver, heart) and species (rat, pig). Endogenous nitric oxide reversibly inhibits oxygen consumption and ATP synthesis by competitive inhibition of cytochrome oxidase. The increased K-m of cytochrome oxidase for oxygen and the steady-state reduction of the electron chain carriers provided experimental evidence for the direct interaction of this oxidase with endogenous nitric oxide. The increase in hydrogen peroxide production by nitric oxide-producing mitochondria not accompanied by the full reduction of the respiratory chain components indicated that cytochrome c oxidase utilizes nitric oxide as an alternative substrate. Finally, effectors or modulators of cytochrome oxidase (the irreversible step in oxidative phosphorylation) had been proposed during the last 40 years. Nitric oxide is the first molecule that fulfills this role (it is a competitive inhibitor, produced at a fair rate near the target site) extending the oxygen gradient to tissues. (C) 2003 Elsevier Science Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available