4.6 Article

Optical excitations in a one-dimensional Mott insulator

Journal

PHYSICAL REVIEW B
Volume 67, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.67.075106

Keywords

-

Ask authors/readers for more resources

The density-matrix renormalization-group (DMRG) method is used to investigate optical excitations in the Mott insulating phase of a one-dimensional extended Hubbard model. The linear optical conductivity is calculated using the dynamical DMRG method and the nature of the lowest optically excited states is investigated using a symmetrized DMRG approach. The numerical calculations agree perfectly with field-theoretical predictions for a small Mott gap and analytical results for a large Mott gap obtained with a strong-coupling analysis. It is shown that four types of optical excitations exist in this Mott insulator: pairs of unbound charge excitations, excitons, excitonic strings, and charge-density-wave (CDW) droplets. Each type of excitation dominates the low-energy optical spectrum in some region of the interaction parameter space and corresponds to distinct spectral features: a continuum starting at the Mott gap (unbound charge excitations), a single peak or several isolated peaks below the Mott gap (excitons and excitonic strings, respectively), and a continuum below the Mott gap (CDW droplets).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available