4.6 Article Proceedings Paper

A comparative study in modelling runoff and its components in two mountainous catchments

Journal

HYDROLOGICAL PROCESSES
Volume 17, Issue 2, Pages 297-311

Publisher

WILEY
DOI: 10.1002/hyp.1125

Keywords

runoff generation; distributed hydrological model; alpine catchments; WaSiM; HRU; multiple validation; lysimeter

Ask authors/readers for more resources

In mountainous catchments the quality of runoff modelling depends strongly on the assessment of the spatial differences in the generation of the various runoff components and of the flow paths as coupled with the amount and intensity of precipitation and/or the snow melting. These catchments are also suitable for the intercomparison of different kinds of hydrological models, particularly of different approaches for the simulation of runoff generation. Two differently structured catchment models were applied on the pre-alpine Rietholzbach research catchment (3.2 km(2)) within the period 1981-98 and on the high-alpine Dischmabach catchment (43 km(2)) within the period 1981-96 for the simulation of hydrological processes and of the runoff hydrographs. The models adopted are the more physically based WaSiM-ETH model, with grid-oriented computation of the water balance elements, and the rather conceptual PREVAH model, based on hydrological response units. The simulation results and the differences resulting from the application of the two models are discussed and compared with the observed catchment discharges, with measurements of evapotranspiration, soil moisture, outflow of a lysimeter, and of groundwater levels in three access tubes. The model intercomparison indicates that the two approaches for determining runoff generation with different degrees of complexity performed with similar statistical efficiency over a period longer than 15 years. The analysis of the simulated runoff components shows that the interflow is the main runoff component and that the portion of the runoff components depends strongly on the approach used. The snowmelt model component is of decisive importance in the snowmelt season and needs to take into account the role of air temperature and radiation for simulating runoff generation in a spatially distributed manner. Copyright (C) 2003 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available