4.5 Article

Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations

Journal

BIOCHEMICAL JOURNAL
Volume 370, Issue -, Pages 233-243

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20021255

Keywords

carpet model; magainin; membrane lysis; mernbrane-binding peptides; molecular-dynamics simulation; peptide-bilayer interactions

Ask authors/readers for more resources

Molecular-dynamics simulations covering 30 ns of both a natural and a synthetic antimicrobial peptide in the presence of a zwitterionic lipid bilayer were performed. In both simulations, copies of the peptides were placed in an alpha-helical conformation on either side of the bilayer about 10 Angstrom (1 Angstrom = 0.1 nm) from the interface, with either the hydrophobic or the positively charged face of the helix directed toward the bilayer surface. The degree of peptide-lipid interaction was dependent on the starting configuration: surface binding and subsequent penetration of the bilayer was observed for the hydrophobically oriented peptides, while the charge-oriented peptides demonstrated at most partial surface binding. Aromatic residues near the N-termini of the peptides appear to play an important role in driving peptide-lipid interactions. A correlation between the extent of peptide-lipid interactions and helical stability was observed in the simulations. Insertion of the peptides into the bilayer caused a dramatic increase in the lateral area per lipid and decrease in the bilayer thickness, resulting in substantial disordering of the lipid chains. Results from the simulations are consistent with early stages of proposed mechanisms for the lytic activity of antimicrobial peptides. In addition to these 'free' simulations, 25 ns simulations were carried out with the peptides constrained at three different distances relative to the bilayer interface. The constraint forces are in agreement with the extent of peptide-bilayer insertion observed in the free simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available