4.8 Article

The force-velocity relationship for the actin-based motility of Listeria monocytogenes

Journal

CURRENT BIOLOGY
Volume 13, Issue 4, Pages 329-332

Publisher

CELL PRESS
DOI: 10.1016/S0960-9822(03)00051-4

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM059285] Funding Source: Medline

Ask authors/readers for more resources

The intracellular movement of the bacterial pathogen Listeria monocytogenes has helped identify key molecular constituents of actin-based motility (recent reviews [1-4]). However, biophysical as well as biochemical data are required to understand how these molecules generate the forces that extrude eukaryotic membranes. For molecular motors and for muscle, force-velocity curves have provided key biophysical data to distinguish between mechanistic theories. Here we manipulate and measure the viscoelastic properties of tissue extracts to provide the first force-velocity curve for Listeria monocytogenes. We find that the force-velocity relationship is highly curved, almost biphasic, suggesting a high cooperativity between biochemical catalysis and force generation. Using high-resolution motion tracking in low-noise extracts, we find long trajectories composed exclusively of molecular-sized steps. Robust statistics from these trajectories show a correlation between the duration of steps and macroscopic Listeria speed, but not between average step size and speed. Collectively, our data indicate how the molecular properties of the Listeria polymerization engine regulate speed, and that regulation occurs during molecular-scale pauses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available