4.5 Article

Structural characteristics controlling the seismicity of southern Japan Trench fore-arc region, revealed by ocean bottom seismographic data

Journal

TECTONOPHYSICS
Volume 363, Issue 1-2, Pages 79-102

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0040-1951(02)00655-8

Keywords

Japan Trench; ocean bottom seismograph; ray-tracing velocity model; mantle wedge; seismicity

Ask authors/readers for more resources

The Japan Trench is a plate convergent zone where the Pacific Plate is subducting below the Japanese islands. Many earthquakes occur associated with plate convergence, and the hypocenter distribution is variable along the Japan Trench. In order to investigate the detailed structure in the southern Japan Trench and to understand the variation of seismicity around the Japan Trench, a wide-angle seismic survey was conducted in the southern Japan Trench fore-arc region in 1998. Ocean bottom seismometers (15) were deployed on two seismic lines: one parallel to the trench axis and one perpendicular. Velocity structures along two seismic lines were determined by velocity modeling of travel time ray-tracing method. Results from the experiment show that the island arc Moho is 18-20 km in depth and consists of four layers: Tertiary and Cretaceous sedimentary rocks, island arc upper and lower crust. The uppermost mantle of the island arc (mantle wedge) extends to 110 km landward of the trench axis. The P-wave velocity of the mantle wedge is laterally heterogeneous: 7.4 km/s at the tip of the mantle wedge and 7.9 km/s below the coastline. An interplate layer is constrained in the subducting oceanic crust. The thickness of the interplate layer is about 1 km for a velocity of 4 km/s. Interplate layer at the plate boundary may cause weak interplate coupling and low seismicity near the trench axis. Low P-wave velocity mantle wedge is also consistent with weak interplate coupling. Thick interplate layer and heterogeneous P-wave velocity of mantle wedge may be associated with the variation of seismic activity. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available