4.6 Article

RAG1-DNA binding in V(D)J recombination - Specificity and DNA-induced conformational changes revealed by fluorescence and CD spectroscopy

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 8, Pages 5584-5596

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M209758200

Keywords

-

Funding

  1. NIAID NIH HHS [AI32524] Funding Source: Medline

Ask authors/readers for more resources

The RAG1 and RAG2 proteins together constitute the nuclease that initiates the assembly of immunoglobulin and T cell receptor genes in a reaction known as V(D)J recombination. RAG1. plays a central role in recognition of the recombination signal sequence (RSS) by the RAG1/2 complex. To investigate the parameters governing the RAG1-RSS interaction, the murine core RAG1 protein (amino acids 377-1008) fused to a short Strep tag has been purified to homogeneity from bacteria. The Strep-RAG1 (StrRAG1) protein exists as a dimer at a wide range of protein concentrations (25-500 nm) in the absence of DNA and binds with reasonably high affinity and specificity (apparent K-D = 41 nm) to the RSS. Both electrophoretic mobility shift assays and polarization anisotropy experiments indicate that only a single StrRAG1-DNA species exists in solution. Anisotropy decay measured by frequency domain spectroscopy suggests that the complex contains a dimer of StrRAG1 bound to a single DNA molecule. Using measurements of protein intrinsic fluorescence and circular dichroism, we demonstrate that StrRAG1 undergoes a major conformational change upon binding the RSS. Steady-state fluorescence and acrylamide quenching studies reveal that this conformational change is associated with a repositioning of intrinsic protein fluorophores from a hydrophobic to a solvent-exposed environment. RSS-induced conformational changes of StrRAG1 may influence the interaction of RAG1 with RAG2 and synaptic complex formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available