4.7 Article

The 1:2 mode interaction in exactly counter-rotating von Karman swirling flow

Journal

JOURNAL OF FLUID MECHANICS
Volume 477, Issue -, Pages 51-88

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112002003075

Keywords

-

Ask authors/readers for more resources

The flow produced in an enclosed cylinder of height-to-radius ratio of two by the counter-rotation of the top and bottom disks is numerically investigated. When the Reynolds number based on cylinder radius and disk rotation is increased, the axisymmetric basic state loses stability and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves; near-heteroclinic cycles; and steady states with an azimuthal wavenumber of 2. This scenario is understood in a dynamical system context as being due to a nearly codimension-two bifurcation in the presence of O(2) symmetry. A bifurcation diagram is determined, together with the most dangerous eigenvalues as functions of the Reynolds number. Two distinct types of near-heteroclinic cycles are observed, with either two or four bursts per cycle. The physical mechanism for the primary instability could be the Kelvin-Helmholtz instability of the equatorial azimuthal shear layer of the basic state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available