4.4 Article Proceedings Paper

Spatial and temporal spectra of the geomagnetic field and their scaling properties

Journal

PHYSICS OF THE EARTH AND PLANETARY INTERIORS
Volume 135, Issue 2-3, Pages 125-134

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0031-9201(02)00211-X

Keywords

geomagnetic field spectra; secular variation; persistence times

Ask authors/readers for more resources

Many natural phenomena show a relationship between their spatial and temporal Fourier spectra. This paper discusses such a connection for the geomagnetic field, when some assumptions are made about the (exponential or power-law) behaviour of the spatial power spectrum of the field itself and that of its time derivative (the spatial spectrum of the secular variation) as estimated from global geomagnetic field models. It is shown that, under either assumption, the temporal spectrum of the geomagnetic field computed at the core-mantle boundary (CMB) would have a power-law behaviour with a negative spectral exponent of about 0.5. At the Earth's surface, although the temporal spectrum obtained from the power-law spatial model assumes a slightly more complicated form, it can be practically approximated with a power law with a negative exponent of about 3.6. Analysis of magnetic observatory data confirms these results and that the starting hypotheses are reasonable, especially in view of the possibly chaotic state of the dynamical processes underlying the generation and maintenance of the geomagnetic field. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available