4.7 Article

Effects of phenolic acids on human phenolsulfotransferases in relation to their antioxidant activity

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 51, Issue 5, Pages 1474-1479

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf0208132

Keywords

platelet; human phenolsulfotransferases; phenolic acids; antioxidant activity

Ask authors/readers for more resources

Sulfate conjugation by phenolsulfotransferase (PST) enzyme is an important process in the detoxification of xenobiotics and endogenous compounds. There are two forms of PST that are specific for the sulfation of small phenols (PST-P) and monoamines (PST-M). Phenoilc acids have been reported to have important biological and pharmacological properties and may have benefits to human health. In the present study, human platelets were used as a model to investigate the influence of 13 phenolic acids on human PST activity and to evaluate the relationship to their antioxidant activity. The results showed that chlorogenic acid, syringic acid, protocatechuic acid, vanillic acid, sinapic acid, and caffeic acid significantly (p < 0.05) inhibited the activities of both forms of PST by 21-30% at a concentration of 6.7 muM. The activity of PST-P was enhanced (p < 0.05) by P-hydroxybenzoic acid, gallic acid, gentisic acid, o-coumaric acid, p-coumaric acid, and m-coumaric acid at a concentration of 6.7 muM, whereas the activity of PST-M was enhanced by gentisic acid, gallic acid, p-hydroxybenzoic acid, and ferulic acid. The phenolic acids exhibited antioxidant activity as determined by the oxygen radical absorbance capacity (ORAC) assay and Trolox equivalent antioxidant capacity (TEAC) assay, especially gallic acid, p-hydroxybenzoic acid, gentisic acid, and coumaric acid, which had strong activity. The overall effect of phenolic acids tested on the activity of PST-P and PST-M was well correlated to their antioxidant activity of ORAC value (r = 0.71, p < 0.01; and r = 0.66, p < 0.01). These observations suggest that antioxidant phenolic acids might alter sulfate conjugation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available