4.6 Article

Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 9, Pages 7540-7552

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M211748200

Keywords

-

Ask authors/readers for more resources

The hyperthermophilic bacterium Thermotoga maritima MSB8 was grown on a variety of carbohydrates to determine the influence of carbon and energy source on differential gene expression. Despite the fact that T. maritima has been phylogenetically characterized as a primitive microorganism from an evolutionary perspective, results here suggest that it has versatile and discriminating mechanisms for regulating and effecting complex carbohydrate utilization. Growth of T. maritima on monosaccharides was found to be slower than growth on polysaccharides, although growth to cell densities of 10(8) to 10(9) cells/ml was observed on all carbohydrates tested. Differential expression of genes encoding carbohydrate-active proteins encoded in the T. maritima genome was followed using a targeted cDNA microarray in conjunction with mixed model statistical analysis. Coordinated regulation of genes responding to specific carbohydrates was noted. Although glucose generally repressed expression of all glycoside hydrolase genes, other sugars induced or repressed these genes to varying extents. Expression profiles of most endo-acting glycoside hydrolase genes correlated well with their reported biochemical properties, although exo-acting glycoside hydrolase genes displayed less specific expression patterns. Genes encoding selected putative ABC sugar transporters were found to respond to specific carbohydrates, and in some cases putative oligopeptide transporter genes were also found to respond to specific sugar substrates. Several genes encoding putative transcriptional regulators were expressed during growth on specific sugars, thus suggesting functional assignments. The transcriptional response of T. maritima to specific carbohydrate growth substrates indicated that sugar backbone- and linkage-specific regulatory networks are operational in this organism during the uptake and utilization of carbohydrate substrates. Furthermore, the wide ranging collection of such networks in T. maritima suggests that this organism is capable of adapting to a variety of growth environments containing carbohydrate growth substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available